
ar
X

iv
:1

31
2.

72
79

v2
  [

cs
.N

A
] 

 2
7 

O
ct

 2
01

4

A Quadratically Convergent Algorithm for

Structured Low-Rank Approximation
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Abstract

Structured Low-Rank Approximation is a problem arising in a wide range of appli-
cations in Numerical Analysis and Engineering Sciences. Given an input matrix M , the
goal is to compute a matrix M

′ of given rank r in a linear or affine subspace E of matri-
ces (usually encoding a specific structure) such that the Frobenius distance ‖M −M

′‖
is small. We propose a Newton-like iteration for solving this problem, whose main
feature is that it converges locally quadratically to such a matrix under mild transver-
sality assumptions between the manifold of matrices of rank r and the linear/affine
subspace E. We also show that the distance between the limit of the iteration and the
optimal solution of the problem is quadratic in the distance between the input matrix
and the manifold of rank r matrices in E. To illustrate the applicability of this algo-
rithm, we propose a Maple implementation and give experimental results for several
applicative problems that can be modeled by Structured Low-Rank Approximation:
univariate approximate GCDs (Sylvester matrices), low-rank Matrix completion (coor-
dinate spaces) and denoising procedures (Hankel matrices). Experimental results give
evidence that this all-purpose algorithm is competitive with state-of-the-art numerical
methods dedicated to these problems.

Keywords: Structured low-rank approximation, Newton iteration, quadratic convergence,
Approximate GCD, Matrix completion.

AMS classification: 65B99 (Acceleration of Convergence), 65Y20 (Complexity and per-
formance of numerical algorithms), 15A83 (Matrix completion problems).
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1 Introduction

1.1 Motivation and problem statement

In a wide range of applications (data fitting, symbolic-numeric computations, signal pro-
cessing, system and control theory,. . . ), the problem arises of computing low rank approx-
imations of matrices under linear constraints; this central question is known as Structured
Low-Rank Approximation (abbreviated SLRA). Quoting Markovsky [33]: behind every linear
data modeling problem there is a (hidden) low-rank approximation problem: the model im-
poses relations on the data which render a matrix constructed from exact data rank deficient.
We refer the reader to [33] for an overview of the vast extent of fields where SLRA arises in
a natural way.

LetMp,q(R) denote the space of p× q matrices with real entries, endowed with the inner
product

〈M1,M2〉 = trace(M1 ·M⊺

2 );

this vector space inherits the Frobenius norm ‖M‖ =
√
〈M,M〉 deduced from this inner

product. For r ∈ N, let further Dr ⊂ Mp,q(R) denote the set of matrices of size p × q and
of rank equal to r; this is both a semi-algebraic set and an analytic manifold inMp,q(R) of
codimension (p − r)(q − r) [6, Proposition 1.1]. The Structured Low-Rank Approximation
Problem can be stated as follows:

Problem 1 - Structured Low-Rank Approximation (SLRA). Let E ⊂
Mp,q(R) be an affine subspace ofMp,q(R), letM ∈ E be a matrix and let r ∈ N

be a integer. Find a matrix M⋆ ∈ E ∩ Dr such that ‖M −M⋆‖ is “small”.

The problem is not entirely specified yet, since we have to state what “small” means. Ac-
tually, several variants of this problem can be found in the litterature (for instance this prob-
lem can be stated similarly for other norms). One way to approach SLRA is as an optimiza-
tion problem, by looking for the matrix M⋆ in E∩Dr which minimizes ‖M −M⋆‖, i.e. such
that ‖M −M⋆‖ = dist(M,E∩Dr), where dist(M,S) denotes the distance ofM to the set S.
Let us denote by ΠE∩Dr

the orthogonal projection ΠE∩Dr
(M) = argminM⋆∈E∩D(‖M −M⋆‖),

which is well-defined and continuous in a neighborhood of E ∩ Dr. Then, the optimization
form of the SLRA problem precisely amounts to computing ΠE∩Dr

(M).
On another hand, it may also be sufficient to compute a matrix M ′ whose distance to

the optimal solution is small with respect to dist(M,E ∩ Dr). This is a mild relaxation of
the optimization form of the problem, and it seems to be sufficient for many applications.
Indeed, the SLRA problem often arises in situations where an exact structured matrix has
been perturbed by some noise, and SLRA can be viewed as a denoising procedure; in this
context, the original matrix may not be the optimal solution of the underlying SLRA problem
and therefore computing M ′ ∈ E ∩Dr such that ‖M −M ′‖ is small may be sufficient if the
error is controlled.
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1.2 Main results

We propose an iterative algorithm, called NewtonSLRA, solving the second form of the SLRA
problem with proven quadratic convergence, under mild transversality conditions on E and
Dr. Given an input matrix M in E, the output of the algorithm is a matrix M ′ in E ∩ Dr

which is a good approximation of the optimal ΠE∩Dr
(M), in the sense that the distance

‖ΠE∩Dr
(M)−M ′‖ is quadratic in dist(M,E ∩ Dr) = ‖ΠE∩Dr

(M)−M‖.
An iteration of the algorithm relies mainly on a Singular Value Decomposition, plus a few

further linear algebra operations. It is not our goal in this paper to analyze the numerical
accuracy of our algorithm in floating-point arithmetic. For this reason, we would like to
state the complexity analysis in terms of arithmetic operations +,−,×,÷ on real numbers.
We can achieve this for all operations except the Singular Value Decomposition, which is an
iterative process in itself (see [24, Ch. 45-46]). As a result, in our cost analysis, we isolate the
cost induced by the Singular Value Decomposition, and count all other arithmetic operations
at unit cost.

In all that follows, if M is a matrix in Mp,q(R), we let Bρ(M) ⊂ Mp,q(R) denote the
open ball centered at M and of radius ρ.

Theorem. The algorithm NewtonSLRA computes a function ϕ defined on an open neighbor-
hood U ⊃ Dr, and with codomain E, verifying the following property:

Let ζ be in E∩Dr such that E and Dr intersect transversally at ζ. There exist ν, γ, γ′ > 0
such that, for all M0 in E ∩Bν(ζ), the sequence (Mi) given by Mi+1 = ϕ(Mi) is well-defined
and converges towards a matrix M∞ ∈ E ∩ Dr and

• ‖Mi+1 −M∞‖ ≤ γ ‖Mi −M∞‖2 for all i ≥ 0;

• ‖ΠE∩Dr
(M0)−M∞‖ ≤ γ′ dist(M0, E ∩ Dr)

2.

Moreover, the function ϕ can be computed by means of a Singular Value Decomposition of
the input matrix M , plus O(min(pqd(p− r)(q− r) + pqr, pqr(pq− d)(p+ q− r))) arithmetic
operations, with d = dim(E).

To the best of our knowledge, this is the first algorithm for SLRA with proven local
quadratic convergence. We can actually give explicit estimates of the constants γ and γ′,
which depend on the incidence angle between Dr and E around ζ and on the second deriva-
tives of the projection operators ΠDr

and ΠE∩Dr
.

Algorithm NewtonSLRA is a variant of a lift-and-project technique which was introduced
by Cadzow [7]. However, instead of projecting orthogonally from Dr back to E, we choose
a direction of projection which is tangent to the determinantal variety Dr, in the spirit of
Newton’s method. The algorithm relies on the Singular Value Decomposition in order to
achieve the “lifting” step.

Let us denote by Φ the limit mapping, given by Φ(M) = M∞, for M∞ as in the above
theorem. The following theorem states that Φ behaves to the first order as the operator
ΠE∩Dr

, which returns the optimal solution of the SLRA problem. In what follows, for ζ
in E ∩ Dr, we denote by Tζ(E ∩ Dr)

0 the tangent vector space to E ∩ Dr at ζ (which is
well-defined as soon as Dr and E intersect transversally at ζ).
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Theorem. The limit operator Φ is well-defined and continuous around any point ζ ∈ E∩Dr

such that Dr and E intersect transversally at ζ, and Φ satisfies Φ(ζ) = ΠE∩Dr
(ζ) = ζ.

Moreover, Φ is differentiable at ζ and

DΦ(ζ) = DΠE∩Dr
(ζ) = ΠTζ(E∩Dr)0 .

These results actually hold more generally than in the SLRA context: the manifold Dr of
rank r matrices could be replaced by any manifold V such that the projection ΠV is of class
C2 and can be computed efficiently, and such that for any point v ∈ V a basis of the normal
space NvV can be obtained. In the context of SLRA where V = Dr, the projection on Dr and
a description of the normal space can be obtained from the Singular Value Decomposition.

Our algorithm NewtonSLRA is suitable for practical computations: to illustrate its effi-
ciency, we have implementated it in Maple and applied it in different contexts:

• univariate approximate GCDs;

• low-rank matrix completion;

• low-rank approximation of Hankel matrices.

For all of these contexts, we provide experimental results and compare it with state-of-the-art
techniques.

1.3 Related works

Structured low-rank approximation and its applications have led to huge amounts of work
during the last decades, from different perspectives. One of the first iterative methods for
computing SLRA is due to Cadzow and is based on alternating projections [7]; it has a linear
rate of convergence [31].

A different approach is based on optimization techniques to approximate the nearest
low-rank matrix. The difficulty in this setting lies in the implicit description of the problem
and of the feasible set. It has led to a large family of algorithms, see e.g. [12] and references
therein.

Several particular cases of SLRA problems have also been deeply investigated, and specific
algorithms have been proposed for these special cases. For instance, the matrix completion
problem asks for unknown values of a matrix in order to satisfy a rank condition [43]. In
particular, this computational question appears in machine learning or in compressed sensing
problems, and convex optimization techniques have been developped in this context, see e.g.
[10, 8, 37]. Techniques of alternating minimizations for SLRA, leading to linear (also called
geometric) convergence have been introduced in [25].

Structured Low-Rank Approximation is also underlying several problems in hybrid symbo-
lic-numerical computations. The notion of quasi-GCD introduced in [41] shows how to com-
pute GCDs by using floating-point computations and has led to developments in the last
decades of different notions of approximate GCD. In particular, degree conditions on the ap-
proximate univariate or multivariate GCD can be expressed by a rank condition in a linear
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space of matrices (see e.g [29, 30, 27, 46, 32, 44]). Certified techniques [20] and geometric
approaches [35] (by perturbing the roots instead of perturbing the coefficients) have also
been developed.

Approximate multivariate factorization also involves a linear space of matrices (Ruppert
matrices) and can be modeled by SLRA [22, 26]. The relation between the ranks of Ruppert
matrices and the reducibility of multivariate polynomials follows from a criterion introduced
in [40].

Denoising procedures in Signal Processing often involve low rank approximation in the
linear space of Hankel matrices. Dedicated techniques for this task have been designed and
analyzed in [36].

Another line of work motivated by the matrix completion problem has been initiated
in [1] by designing a Newton-like method for computing the optima of functions defined
over Riemannian manifolds. Other optimization techniques such as the Structured Total
Least Squares approach have also been applied to the SLRA problem and can be applied to
different matrix norms [39, 36, 28].

In [18], the authors show several algebraic and geometric properties of the critical points
of the Euclidean distance function on an algebraic variety. For instance, a connection is
exhibited between the number of complex critical points and the degrees of the Chern classes
of the variety. Algebraic methods for solving the SLRA optimization problem from this
viewpoint have been investigated in [34], with a special focus on generic linear spaces E and
on SLRA problems occurring in approximate GCD and symmetric tensor decompositions.

1.4 Organization of the paper

Section 2 introduces the main tools that will be used throughout this paper. In Section 3,
we describe the algorithm NewtonSLRA, we prove its correctness and derive the complexity of
each of its iteration. The main result is the proof of the local quadratic rate of convergence
of NewtonSLRA in Section 4. Finally, we show the experimental behavior of NewtonSLRA in
Section 5 and apply it to three different applicative contexts: univariate approximate GCD,
low-rank matrix completion, and low-rank approximation of Hankel matrices.

2 Preliminaries

Our algorithm combines features of the alternating projections algorithm and of Newton’s
method for solving underdetermined systems. In this section, we introduce basic ingredi-
ents used in those previous algorithms that will be reused here, and present the basics of
alternating projections techniques and Newton iteration for comparison purposes.

2.1 Notations and basic facts

Throughout this paper, if E is an affine space, E0 denotes the underlying vector space, so
that E = x + E0, for any x in E. In particular, if V is a manifold or an algebraic set lying
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in a Euclidean space, and x is in V, then TxV denotes the affine space that is tangent to V
at x and the underlying vector space is denoted by TxV0; thus TxV = x + TxV0. Similarly,
the normal space NxV to V at x is given by NxV = x+NxV0, where NxV0 is the orthogonal
complement of TxV0.

Recall next our definition of the projection operator ΠV on the manifold V. For a proof
of the following properties, see [31, Lemma 4].

Lemma 2.1. Let E be a Euclidean space and let V ⊂ E be a manifold of class Ck with k ≥ 2.
There exists an open neighborhood U of V such that the projection

ΠV(x) = argmin{‖y − x‖ : y ∈ V}

is well-defined on U . Moreover, ΠV is of class Ck−1 around any point ζ ∈ V and

∀ζ ∈ V, DΠV(ζ) = ΠTΠV (ζ)V
0.

We will need further results regarding the projection ΠV ; they will be obtained under
suitable transversality assumptions. For definiteness, let us recall the definition of transver-
sality.

Definition 2.2. Let E be a Euclidean space, let V ⊂ E be a manifold of class C1, and let E
be an affine subspace of E. We say that E and V intersect transversally at ζ ∈ E ∩ V if

codim(E0 ∩ TζV0) = codim(E0) + codim(TζV0).

In particular, suppose that E has dimension n, V has dimension s, and E has dimension
d; then, a necessary condition for them to intersect transversally is that s + d ≥ n. In that
case, remark that E0 ∩ TζV0 has dimension t = s+ d− n.

Under such a transversality assumption, we obtain the following results on the existence
of smooth bases of several vector spaces.

Lemma 2.3. Let E be a Euclidean space of dimension n, let E be an affine subspace of E of
dimension d < n, and let V ⊂ E be a manifold of dimension s and of class Ck with k ≥ 1.
Suppose that E and V intersect transversally at a point ζ ∈ E ∩ V; let further t = s+ d− n
be the dimension of E0 ∩ TζV0.

Then, there exists an open neighborhood U of ζ and functions e1, . . . , et, e
′
t+1, . . . , e

′
d and

e′′t+1, . . . , e
′′
s , all of class C

k−1 : U → E, such that the following holds:

• for x in U , the families (e1(x), . . . , et(x)), (e1(x), . . . , et(x), e
′
t+1(x), . . . , e

′
d(x)) and

(e1(x), . . . , et(x), e
′′
t+1(x), . . . , e

′′
s(x)) are orthonormal

and, for x in V ∩ U :

• the intersection E ∩ TxV is not empty;

• (e1(x), . . . , et(x)) is a basis E0 ∩ TxV0;
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• (e1(x), . . . , et(x), e
′
t+1(x), . . . , e

′
d(x)) is a basis of E0;

• (e1(x), . . . , et(x), e
′′
t+1(x), . . . , e

′′
s(x)) is a basis of TxV0.

Proof. There exist linear forms ℓ1, . . . , ℓn−d and constants b1, . . . , bn−d such that for all u in
E, u is in E if and only if ℓi(u) = bi for all i in {1, . . . , n−d}. Similarly, taking the gradients
of implicit equations ϕ1 = · · · = ϕn−s = 0 that define V around ζ , we see that there exists a
neighborhood U of ζ , functions ℓ′1, . . . , ℓ

′
n−s : U × E → R of class Ck−1 in x ∈ U and linear

in u ∈ E, and functions b′1, . . . , b
′
n−s : U → R of class Ck−1 such that for x in V ∩ U , u ∈ E

belongs to TxV if and only if ℓ′j(x, u) = b′j(x) for all j in {1, . . . , n− s}.
Thus, for a given x in V ∩ U , u belongs to E ∩ TxV if and only if the linear equations

ℓi(u) = bi and ℓ
′
j(x, u) = b′j(x) are satisfied for all i in {1, . . . , n− d} and j in {1, . . . , n− s}.

Call η1, . . . , η2n−s−d the linear forms defining the homogeneous part of these equations; the
corresponding homogeneous linear system ηi = 0 defines E0 ∩ TxV0. The transversality
assumption shows that for x = ζ , the (2n − s − d) × n matrix of this system has full rank
2n − s − d. By continuity, this remains true for x in a neighborhood of ζ , and for such x,
E ∩ TxV is not empty. Up to restricting U , this proves the second item.

Applying Cramer’s formulas, we can deduce from (ϕ1, . . . , ϕn−s) and (ℓ1, . . . , ℓn−d) func-
tions (ε1, . . . , εt), (ε

′
t+1, . . . , ε

′
d), (ε

′′
t+1, . . . , ε

′′
s), with all εi, ε

′
j, ε

′′
k of class Ck−1 : U → E, such

that for x in U , the vector families (ε1(x), . . . , εt(x)), (ε1(x), . . . , εt(x), ε
′
t+1(x), . . . , ε

′
d(x)) and

(ε1(x), . . . , εt(x), ε
′′
t+1(x), . . . , ε

′′
s(x)) are nullspace bases for respectively

ℓ1(u) = · · · = ℓn−d(u) = Dϕ1(x)(u) = · · · = Dϕn−s(x)(u) = 0
ℓ1(u) = · · · = ℓn−d(u) = 0

Dϕ1(x)(u) = · · · = Dϕn−s(x)(u) = 0.

In particular, if x is actually in V ∩ U , those are bases for respectively E0 ∩ TxV0, E0 and
TxV0. Applying Gram-Schmidt orthogonalization to these families of functions, we obtain
the functions in the statement of the lemma.

The following result is a direct corollary of the previous lemma.

Lemma 2.4. Let E be a Euclidean space, let V ⊂ E be a manifold of class C1 and let E be
an affine subspace of E. Suppose that E and V intersect transversally at a point ζ ∈ E ∩ V.
Then, there exists a neighborhood U of ζ such that for x in U , ΠV(x) is well-defined and the
intersection E ∩ TΠV (x)V is not empty.

Proof. Let U0 be a neighborhood of ζ such that ΠV is well-defined and continuous in U0

and such that the intersection E ∩ TxV is not empty for x in V ∩ U0 (such an U0 exists by
Lemmas 2.1 and 2.3). Then, take U = Π−1

V (V ∩ U0) ∩ U0.

In the particular case where E =Mp,q(R) and V = Dr ⊂ Mp,q(R), the projection ΠDr

can be made explicit using the Eckart-Young Theorem, which shows that ΠDr
(M) can be

computed from the singular value decomposition of M :
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Theorem 2.5. Let M ∈ Mp,q(R) be a matrix, M = U · S · V ⊺ be its singular value decom-

position and σ1 ≥ · · · ≥ σmin(p,q) be its singular values. Assume that σr 6= σr+1 and let S̃ be
the diagonal matrix defined by

S̃i,i =

{
Si,i if Si,i ≥ σr

0 otherwise

Then there exists a unique matrix ΠDr
(M) of rank r minimizing the distance to M and this

matrix is given by ΠDr
(M) = U · S̃ · V ⊺.

The last notion we will need is the Moore-Penrose pseudoinverse of either a matrix or
a linear mapping A; in both cases, we will denote it by A†. Its main feature is that the
solution of a consistent linear system Ax = y with minimal 2-norm is given by A†y (in the
non-consistent case, this outputs the minimizer for the residual Ax− y).

2.2 Cadzow’s algorithm: alternating projections

The first occurrence of the general problem of structured low rank approximation that we
are aware of is described in [7]. In this paper, Cadzow introduces an algorithm based on
alternating projections to solve SLRA problems. A solution M ′ of an SLRA problem should
verify two properties:

• (P1) M ′ ∈ E;
• (P2) rank(M ′) ≤ r.

Cadzow’s algorithm, as illustrated in Figure 1, proceeds by looking successively for the
nearest matrices which satisfy alternatively (P1) and (P2). The nearest matrix verifying
(P1) is obtained by the orthogonal projection on E, and, as prescribed by the Eckart-Young
theorem, the closest matrix verifying (P2) is obtained by truncating its Singular Value
Decomposition.

We would like to emphasize that in the general case (and in most applications), the
intersection E ∩ Dr has positive dimension, whereas in Figure 1 (and all further ones), this
intersection appears to have dimension zero.

Details of Cazdow’s algorithm are given in Algorithm 1 below. In this algorithm, forM ∈
Mp,q(R), the subroutine SVD(M) returns three matrices U ∈ Mp,p(R), S ∈ Mp,q(R), V ∈
Mq,q(R), such that M = U · S · V ⊺, U and V are unitary matrices, and S is diagonal. The
diagonal entries of S are the singular values of M , sorted in decreasing order.

Algorithm 1 (which is sometimes called lift-and-project or alternating projections in the
literature) converges linearly towards a matrix M̂ which verifies both conditions (P1) and
(P2), as proved in [31]. In this context, the linear convergence means that if (Mi)i≥0 is the
sequence of iterates of Cadzow’s algorithm converging towards limi→∞Mi =M∞, then there
exists a positive constant c such that

‖Mi+1 −M∞‖ ≤ c ‖Mi −M∞‖ .
As pointed out in [13], iterating Algorithm 1 does not converge in general towards ΠE∩Dr

(M0).
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E

Dr

Figure 1: Cadzow’s algorithm

Algorithm 1 one iteration of Cadzow’s algorithm

1: procedure Cadzow(M , (E1, . . . , Ed) an orthonormal basis of E0, r)
2: U, S, V ← SVD(M)
3: Ur ← first r columns of U
4: Vr ← first r columns of V
5: Sr ← r × r top-left sub-matrix of S
6: M̃ ← Ur · Sr · V ⊺

r

7: return M +
∑d

i=1〈M̃ −M,Ei〉Ei

8: end procedure

2.3 Newton’s method

Newton’s method is an iterative technique to find zeros of real (or complex) functions. One
of its main features is its quadratic rate of convergence: each iteration multiplies the number
of significant digits of the solution by two. This iteration was first designed for systems with
as many equations as variables, and was then successfully extended to non-square systems
by using the Moore-Penrose pseudo-inverse. Let thus f : E→ F be a differentiable mapping
of Euclidean spaces. Then the Newton iteration is given by

Newtonf (x) = x−Df(x)†f(x),

where, as said above, Df(x)† denotes the Moore-Penrose pseudo-inverse of the linear appli-
cation Df(x).

In the underdetermined case (when dim(E) > dim(F)), this iteration converges locally
quadratically towards a point in f−1(0) if Df(x) is locally surjective. The properties of this
iteration have been deeply investigated during the last decades [4, 2, 16, 15].
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Newton’s method does not apply directly in our context. However, Figure 2 below
suggests that in some cases (when for instance dim(Dr) = dim(E) and Dr is given as the
graph of a mapping defined on E), using Newton iteration could lead to a fast iterative
algorithm. Our algorithm is motivated by this remark.

E

Dr

Figure 2: Newton’s method

3 Algorithm NewtonSLRA

We propose an iterative algorithm NewtonSLRA which combines the applicability of Cad-
zow’s algorithm and the quadratic convergence of Newton’s iteration. Each of its iterations
proceeds in the following three main steps.

• First, compute the projection M̃ = ΠDr
(M) onto the determinantal variety Dr (lines

2-6 in Algorithm 2);

• next, compute a set of generators of the normal space N
M̃
Dr (lines 7-11);

• finally, compute the point in E ∩ T
M̃
Dr which minimizes the distance to M (lines

12-14).

We propose two dual methods for computing the last step, leading to the two variants
NewtonSLRA/1 and NewtonSLRA/2 whose pseudo-codes are given in Algorithm 2 and Algo-
rithm 3. Their main difference is the size of an intermediate matrix leading to the differences
in their domains of efficiency: NewtonSLRA/1 is well-suited when r is large and d is small,
whereas NewtonSLRA/1 performs better when r is small and d is large.

In Figure 3, we show one iteration of Algorithm NewtonSLRA; remark that the first step
is similar to what happens in Cadzow’s algorithm, but that we then use a linearization
inspired by Newton’s iteration. Note as well that in this very particular example, E ∩T

M̃
Dr
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E

Dr

Figure 3: NewtonSLRA

has dimension zero, whereas this may not be the case in general. Nevertheless, this figure
suggests that our algorithm may converge quadratically (we prove this rate of convergence
in Section 4).

Notes on the pseudo-code of NewtonSLRA. While it is convenient to introduce the
matrices N(i−1)(q−r)+j = ũi · ṽj⊺ (and Tℓ for the variant NewtonSLRA/2) to prove the cor-
rectness of Algorithms 2 and 3, they do not need to be explicitely computed. All that the
algorithm needs are inner products of the form 〈Nℓ, X〉 (or 〈Tℓ, X〉 in NewtonSLRA/2) for
various matrices X . Such an inner product can be computed efficiently by the formula

〈ũi · ṽj⊺, X〉 = ũi
⊺ ·X · ṽj .

Also, the Moore-Penrose pseudo-inverses A† and A′† do not need to be computed: what
is actually needed is the solution of the linear least square problem argminx ‖x‖ subject to
A·x = b (resp. A′ ·x = b′). To our knowledge, using this trick does not change the asymptotic
complexity, but it can make a notable efficiency improvement in practice.

Proposition 3.1 (Correctness of NewtonSLRA). Suppose that Dr and E intersect transver-
sally at a point ζ ∈ Dr ∩ E. There exists an open neighborhood U of ζ such that if
M ∈ U ∩ E and (E1, . . . , Ed) is an orthonormal basis of E0, then ΠE∩T

M̃
Dr
(M) is well-

defined, for M̃ = ΠDr
(M), and Algorithms 2 and 3 with input (M, (E1, · · · , Ed), r) return

ΠE∩T
M̃

Dr
(M).

The proof of this proposition, together with the cost analysis of the algorithm, occupy
the end of this section. Let U be the neighborhood of ζ as defined in Lemma 2.4. In view
of that lemma, ΠDr

is well-defined on U , and so is the mapping M 7→ ΠE∩TΠDr
(M)Dr

(M).

In what follows, we let ϕ : U ∩ E → E denote the latter function; thus, our claim is that
Algorithm NewtonSLRA computes the mapping ϕ.

11



Algorithm 2 one iteration of NewtonSLRA/1 algorithm

1: procedure NewtonSLRA/1(M ∈ E, (E1, . . . , Ed) an orthonormal basis of E0, r ∈ N)
2: (U, S, V )← SVD(M)
3: Sr ← r × r top-left sub-matrix of S
4: Ur ← first r columns of U
5: Vr ← first r columns of V
6: M̃ ← Ur · Sr · V ⊺

r

7: ũ1, . . . , ũp−r ← last p− r columns of U
8: ṽ1, . . . , ṽq−r ← last q − r columns of V
9: for i ∈ {1, . . . , p− r}, j ∈ {1, . . . , q − r} do
10: N(i−1)(q−r)+j ← ũi · ṽj⊺
11: end for
12: A← (〈Nk, Eℓ〉)k,ℓ ∈M(p−r)(q−r),d(R)

13: b← (〈Nk, M̃ −M〉)k ∈M(p−r)(q−r),1(R)

14: return M +
∑d

ℓ=1

(
A† · b

)
ℓ
Eℓ

15: end procedure

Algorithm 3 one iteration of NewtonSLRA/2 algorithm

1: procedure NewtonSLRA/2(M ∈ E, (E ′
1, . . . , E

′
pq−d) an orthonormal basis of (E0)⊥, r ∈

N)
2: (U, S, V )← SVD(M)
3: Sr ← r × r top-left sub-matrix of S
4: Ur ← first r columns of U
5: Vr ← first r columns of V
6: M̃ ← Ur · Sr · V ⊺

r

7: u1, . . . , up ← columns of U
8: v1, . . . , vq ← columns of V
9: (Tℓ)1≤ℓ≤(p+q−r)r ← list of all matrices of the form ui · v⊺j , where i ≤ r or j ≤ r
10: A′ ← (〈E ′

k, Tℓ〉)k,ℓ ∈ Mpq−d,(p+q−r)r(R)

11: b′ ← (〈E ′
k,M − M̃〉)k ∈Mpq−d,1(R)

12: return M̃ +
∑(p+q−r)r

ℓ=1

(
A′† · b′

)
ℓ
Tℓ

13: end procedure
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The following classical result yields an explicit description of the tangent and normal
spaces of determinantal varieties. The notation Hom(Rq,Rp) stands for the set of R-linear
maps from Rq to Rp.

Lemma 3.2. Let M ∈Mp,q(R) be such that rank(M) = r. Let ℓ be the linear application

ℓ : R
q −→ R

p

v 7−→ M · v
Then the tangent space of Dr at M satisfies

TMD0
r = Im(ℓ)⊗ Rq + Rp ⊗Ker(ℓ)⊥

= {ℓ′ ∈ Hom(Rq,Rp) | ℓ′(Ker(ℓ)) ⊂ Im(ℓ)}
and the normal space to Dr at M satisfies

NMD0
r = Ker(M⊺)⊗Ker(M).

Proof. Classical references for the proof of these claims are [3], [19, Section 3] and [23,
Ch. 6,§1]. We recall the proof of the last claim with the notation used in this paper. Let
{a1, . . . , ap−r} be a basis of Ker(M⊺), and {b1, . . . , bq−r} be a basis of Ker(M). Then the set
{ai⊗ bj}i,j is a basis of Ker(M⊺)⊗Ker(M). Now let v ∈ TMD0

r be a tangent vector. In view
of the first claim, it can be rewritten as a finite sum

∑
k ck ⊗ dk ∈ TMD0

r where ck ∈ Im(M)
or dk ∈ Ker(M)⊥. Consequently, 〈ai ⊗ bj , v〉 =

∑
k〈ai, ck〉〈bj, dk〉 = 0 and thus Ker(M⊺) ⊗

Ker(M) ⊂ NMD0
r . Finally, since dim(NMD0

r) = (p− r)(q − r) = dim(Ker(M⊺)⊗Ker(M)),
we obtain Ker(M⊺)⊗Ker(M) = NMD0

r .

Proof of Proposition 3.1. We are now able to prove the correctness of the two variants of
NewtonSLRA. As in the algorithm, let us define M̃ = Ur · Sr · V ⊺

r , where Sr is the r × r
top-left sub-matrix of S, and Ur and Vr are made of the first r columns of respectively U
and V . Then, by the Eckart-Young Theorem, forM ∈ U , the matrix M̃ is equal to ΠDr

(M).

Besides, by construction, the vectors ũ1, . . . , ũp−r (resp. ṽ1, . . . , ṽq−r) are a basis of Ker(M̃⊺)

(resp. Ker(M̃)). Then, the previous lemma implies that the matrices Nℓ in NewtonSLRA/1

(resp. Tℓ in NewtonSLRA/2) are a basis of the normal space N
M̃
Dr (resp. a basis of the

tangent space T
M̃
Dr).

Let ϕ(M) denote ΠE∩T
M̃

Dr
(M). In order to conclude, we have to prove that the matrix

computed at line 14 is ϕ(M), that is, that (with the notation of the algorithms)

M +

d∑

ℓ=1

(
A† · b

)
ℓ
Eℓ = M̃ +

(p+q−r)r∑

ℓ=1

(
A′† · b′

)
ℓ
Tℓ = ΠE∩T

M̃
Dr
(M).

An element F ofMp,q(R) belongs to E ∩ TM̃Dr if and only if F −M is in E0 and F − M̃ is
in T

M̃
D0

r . The first condition is equivalent to the existence of a1, . . . , ad such that F −M =∑d

i=j ajEj and the second one holds when

∀i ∈ {1, . . . , (p− r)(q − r)}, 〈Ni, F − M̃〉 = 0;
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taking into account the first constraint, the latter ones become, for all i ∈ {1, . . . , (p−r)(q−
r)},

〈Ni,M − M̃〉+
∑d

j=1 aj〈Ni, Ej〉 = 〈Ni,M − M̃〉+ 〈Ni, F −M〉
= 0.

As in the algorithm, set

A =




〈N1, E1〉 . . . 〈N1, Ed〉
...

...
...

〈N(p−r)(q−r), E1〉 . . . 〈N(p−r)(q−r), Ed〉


 and b =




〈N1, M̃ −M〉
...

〈N(p−r)(q−r), M̃ −M〉


 .

Then, the previous discussion shows that F belongs to E ∩ T
M̃
Dr if and only if

F =M +
d∑

i=j

ajEj,

where a1, . . . , ad satisfy the linear system

A ·



a1
...
ad


 = b.

By construction, ϕ(M) is the matrix satisfying these constraints that minimizes ‖ϕ(M)−M‖.
Since (E1, . . . , Ed) is an orthonormal basis, ‖ϕ(M)−M‖2 =

∑d
i=1 a

2
i and hence the least

square condition on ϕ(M)−M amounts to finding the solution a1, . . . , ad of the former lin-
ear system that minimizes the 2-norm (we know that this linear system is consistent, since
E∩T

M̃
Dr is not empty). The least-square solution can be obtained with the Moore-Penrose

pseudo-inverse of A, so we finally deduce that



a1
...
ad


 = A† · b,

and hence ϕ(M) =M +
∑d

i=1

(
A† · b

)
i
Ei. This proves the correctness of NewtoNSLRA/1.

The correctness of NewtonSLRA/2 is proved similarly, by writing F − M̃ =
∑(p+q−r)r

ℓ=1 a′ℓTℓ
for unknown values a′ℓ ∈ R. The condition F −M = M̃ −M +

∑(p+q−r)r
ℓ=1 a′ℓTℓ ∈ E becomes

〈M̃ −M,E ′
i〉+

(p+q−r)r∑

ℓ=1

a′ℓ〈Tℓ, E ′
i〉 = 0

and the rest of the proof is similar to the one above.
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Complexity. All subroutines that appear in NewtonSLRA are linear algebra algorithms. In
particular, one iteration needs to compute:

• the Singular Value Decomposition of the p× q matrix M ;

• the matrix M̃ ;

• O(d(p− r)(q − r)) inner products between matrices of size p × q (with d = dim(E)),

of the form 〈N(i−1)(q−r)+j , Eℓ〉 or 〈N(i−1)(q−r)+j , M̃ −M〉, with N(i−1)(q−r)+j = ũi · ṽj⊺;

• the Moore-Penrose pseudoinverse of the (p− r)(q − r)× d matrix A (NewtonSLRA/1)
or the (p+ q − r)r × (pq − d) matrix A′ (NewtonSLRA/2);

• the output ϕ(M) =M +
∑d

i=1

(
A† · b

)
i
Ei.

As explained in the introduction, we would want to give simple complexity statements,
counting arithmetic operations +,−,×,÷ over the reals at unit cost, avoiding the discussion
of accuracy inherent to floating-point arithmetic. This is not possible for the Singular Value
Decomposition, so we will simply take this computation as a black-box.

Computing M̃ can be done in O(pqr) arithmetic operations. For Nℓ = ũi · ũj⊺, the inner
products of the form 〈Nℓ, X〉 can be computed by the formula

〈ũi · ṽj⊺, X〉 = ũi
⊺ ·X · ṽj

in O(pq) arithmetic operations, for a total of O(pqd(p− r)(q− r)) for the construction of the
matrix A. Similarly, the matrix A′ in NewtonSLRA/2 can be constructed within O(pqr(pq −
d)(p + q − r)) operations. The Moore-Penrose pseudoinverse of A (resp. A′) can then be
computed in O(d(p− r)2(q− r)2) arithmetic operations (resp. O((pq−d)2(p+ q− r)r)), and
deducing ϕ(M) can be done in O(dpq) operations in NewtonSLRA/1 (resp. O(pqr(p+ q− r))
in NewtonSLRA/2).

Altogether, up to the SVD computation, all operations can be achieved within

• O(pqd(p− r)(q − r) + pqr) arithmetic operations for NewtonSLRA/1;

• O(pqr(pq − d)(p+ q − r)) arithmetic operations for NewtonSLRA/2.

In particular, the cost of NewtonSLRA/1 is at most quadratic in the size of the input (speci-
fying the basis E1, . . . , Ed of E0 requires O(dpq) entries).

4 Rate of convergence

The aim of this section is to prove the local quadratic convergence of NewtonSLRA and to
control the distance between its output and the optimal solution of the SLRA problem. The
results given in this part of the paper are more general than the SLRA context: as in [31], we
will perform our analysis for a manifold V in a Euclidean space E of class C3, instead of Dr;
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as before, we let E be a proper affine subspace of E. We assume without loss of generality
that V 6= E.

Let ζ ∈ E∩V be such that the intersection of E and V is transverse at ζ . By Lemmas 2.1
and 2.4, we know that in a neighborhood U of ζ , the mapping x 7→ ΠV(x) is well-defined
and of class C2, and the intersection E ∩ TΠV(x)V is not empty. As a result, the projection
ϕ : x 7→ ΠE∩TΠV (x)V(x) is itself well-defined over U . We saw in the previous section that in
the case V = Dr, algorithm NewtonSLRA precisely computes the mapping ϕ. In the more
general context of this section, we study the iterates ϕn = ϕ ◦ · · · ◦ϕ (which will turn out to
be well-defined, up to restricting the domain of ϕ).

The transversality assumption implies that, up to restricting U , the intersection W =
E ∩ V ∩ U is a manifold of class C3. Up to restricting U further, we can assume (by means
of Lemma 2.1) that the projection operator ΠW is well-defined and of class C2 in U . In the
context of Structured Low Rank Approximation, W = E ∩ Dr ∩ U , and the projection ΠW

represents the optimal solution to our approximation problem.
The following theorems are the main results of this section; taken in the context of SLRA,

they finish proving the theorems stated in the introduction.
The first part of the following theorem ensures the local quadratic convergence of the

iterates of ϕ; the second part bounds the distance between the limit point of the iteration
and the optimal solution ΠW(x0). Roughly speaking, this shows that locally the limit of the
iteration looks like the orthogonal projection onW. This will be formalized in Theorem 4.2.

Theorem 4.1. Let ζ be in E ∩ V such that ΠV is C2 around ζ and V and E intersect
transversally at ζ. There exists ν, γ, γ′ > 0 such that, for all x0 ∈ Bν(ζ), the sequence (xi)
given by xi+1 = ϕ(xi) is well-defined and converges towards a point x∞ ∈ W, with

• ‖xi+1 − x∞‖ ≤ γ ‖xi − x∞‖2 for i ≥ 0;

• ‖ΠW(x0)− x∞‖ ≤ γ′ ‖ΠW(x0)− x0‖2.

In general, x∞ 6= ΠW(x0); in particular, NewtonSLRA will usually not converge to the
optimal solution of an SLRA problem. Nevertheless, the following theorem shows that Φ is
a good local approximation of the function ΠW around W.

Theorem 4.2. Let ζ be in E ∩ V such that ΠV is C2 around ζ and V and E intersect
transversally at ζ, and let Φ : Bν(ζ)→ E denote the limit operator Φ(x) = x∞, for x∞ as in
Theorem 4.1. Then, Φ is differentiable at ζ and DΦ(ζ) = ΠTζW

0.

Note that in the context of SLRA, Dr and E ∩ Dr are of class C∞ in the neighborhood
of points ζ ∈ E ∩ Dr where the intersection is transverse.

4.1 Angle between linear subspaces

Our analysis will rely on the notion of angle between two linear subspaces (see e.g. [21], [17,
Ch. 9], [31, Section 3]). In what follows, S = {x ∈ E : ‖x‖ = 1} denotes the unit sphere and
M⊥ denotes the orthogonal complement of a linear subspace M of E.
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Definition 4.3 (angle between linear subspaces). Let M,N ⊂ E be two linear subspaces. If
N ⊂ M or M ⊂ N , we set α(M,N) = 0. Otherwise, their angle α(M,N) is the value in
[0, π/2] defined by

α(M,N) := arccos
(
max{〈x, y〉 : x ∈ S ∩M ∩ (M ∩N)⊥, y ∈ S ∩N ∩ (M ∩N)⊥}

)
.

The following lemma (see [17, Lemma 9.5] for a proof) shows that when we consider the
maximum of the scalar products, we only need one vector to be orthogonal to M ∩N .

Lemma 4.4. If x is in S ∩M ∩ (M ∩N)⊥ and y is in S ∩N , then

〈x, y〉 ≤ cos(α(M,N)).

We can now describe a few consequences of our transversality assumptions for angles
between various subspaces.

Lemma 4.5. There exists an open neighborhood U of ζ such that infx∈V∩U α(TxV0, E0) > 0.

Proof. First, notice that the angle α(M,N) between two linear subspaces M and N cannot
be 0 if M 6⊂ N and N 6⊂ M . Since by assumption V 6= E and E 6= E, and V and E
intersect transversely at ζ , we have neither TζV0 ⊂ E0 nor E0 ⊂ TζV0. We deduce that
α(T 0

ζ V, E0) 6= 0.
The rest of the proof is similar to that of [31, Lemma 10]. Recall from Lemma 2.3

that for x in a neighborhood U0 of ζ , we know orthonormal families (e1(x), . . . , et(x)),
(e1(x), . . . , et(x), e

′
t+1(x), . . . , e

′
d(x)) and (e1(x), . . . , et(x), e

′′
t+1(x), . . . , e

′′
s(x)), that vary con-

tinuously with x, and that are bases of respectively E0 ∩ TxV0, E0 and TxV0 whenever x is
in V ∩ U0.

For x in U0, consider the linear mapping πx = ΠS′(x)ΠS′′(x)−ΠS(x), where S(x), S
′(x), S ′′(x)

are the vector spaces spanned by the three families above. The matrix of this linear mapping,
and thus its operator norm, vary continuously with x.

Now, when x is in V ∩ U0, πx is the linear mapping ΠE0ΠTxV0 − ΠE0∩TxV0. From [17,
Ch. 9], we know that the norm of this operator is the cosine of α(TxV0, E0). This shows
that at x = ζ , the norm of πx is nonzero; by continuity, this remains true in a neighborhood
U ⊂ U0 of ζ .

Lemma 4.6. There exists an open neighborhood U of ζ such that for any x and y in V ∩U ,
the intersection of the vector spaces E0 ∩ TxV0 and (E0 ∩ TyV0)

⊥
is trivial.

Proof. Let n = dim(E), d = dim(E), s = dim(V) and t = dim(E0∩TζV0); the transversality
assumption shows that t = s+ d− n.

Using again Lemma 2.3, we know that there exist a neighborhood U0 of ζ and vectors
e1(x), . . . , et(x) depending continuously of x ∈ U0, that form a orthonormal family, and
whose span is E0 ∩ TxV0 for x in V ∩ U0. Then, up to restricting further U0, we consider
a local submersion ψ : E → Rn−t such that ψ−1(0) ∩ U0 = E ∩ V ∩ U0. Applying Gram-
Schmidt orthogonalisation to the gradient of ψ defines vectors et+1(x), . . . , en(x) that depend
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continuously on x and such that (e1(x), . . . , en(x)) is an orthonormal basis of E. In particular,
when x is in V ∩ U0, (et+1(x), . . . , en(x)) is an orthonormal basis of (E0 ∩ TxV0)⊥.

For x and y in V ∩U0, the intersection of E0 ∩ TxV0 and (E0 ∩ TyV0)
⊥
is reduced to {0}

whenever the determinant ∆ of the family (e1(x), . . . , et(x), et+1(y), . . . , en(y)) is nonzero.
The determinant ∆ is a continuous function U0 × U0 → R, and ∆(ζ, ζ) is nonzero, so there
exists a neighborhood Ω ⊂ U0×U0 of (ζ, ζ) that does not intersect ∆

−1(0). It is then enough
to take U such that U × U ⊂ Ω.

Lemma 4.7. Consider the mapping

Λ : V × V → [0, 1]

(x, y) 7→ cos(α(E0 ∩ TxV0, (E0 ∩ TyV0)
⊥
)).

There exists an open neighborhood U of ζ and a constant λ such that for x, y in V ∩ U ,
Λ(x, y) is well-defined, and the inequality Λ(x, y) ≤ λ ‖x− y‖ holds.

Proof. As before, let n = dim(E), d = dim(E), s = dim(V) and t = dim(E0 ∩ TζV0).
Using Lemma 2.3, we know that there exist C2 functions e1, . . . , et : U → E, defined in a
neighborhood U0 of ζ , such that for x in V ∩ U , e1(x), . . . , et(x) is a orthonormal basis of
E0 ∩ TxV0. As in the previous lemma, this basis can be completed to an orthonormal basis
(e1(x), . . . , en(x)) of E, with functions et+1, . . . , en that are still C2 around ζ .

Consider the function Γ : U0 × U0 → R, such that Γ(x, y) is the 2-norm of the linear
mapping Πe1(x),...,et(x)Πet+1(y),...,en(y). Using the previous lemma, up to restricting U0, we may
also assume that for x and y both in V ∩U0, the intersection of the vector spaces E0 ∩ TxV0

and (E0 ∩ TyV0)
⊥
is trivial. Using [17, Ch. 9] as in Lemma 4.5, this implies in particular

that for such x and y, Λ(x, y) = Γ(x, y). Thus, we are going to prove that an inequality of
the form Γ(x, y) ≤ C ‖x− y‖ holds for x and y in V ∩ U , for suitable U ⊂ U0 and C.

Let U be an open ball centered at ζ , such that U is contained in U0. Because et+1, . . . , en
are C1, there exists a constant c ≥ 0 such that ‖ei(x)− ei(y)‖ ≤ c/n ‖x− y‖ holds for all
x, y in U and i in {t+ 1, . . . , n}.

The matrix Py of the orthogonal projection Πet+1(y),...,en(y) can be written as Py = RyR
⊺

y,
where Ry is the matrix with columns et+1(y), . . . , en(y). In particular, Ry can be rewritten
as Ry = Rx + δx,y, with Rx being the matrix with columns et+1(x), . . . , en(x) and where the
operator norm of δx,y is bounded by c ‖x− y‖. As a result, Py can be rewritten as

Py = RyR
⊺

y

= RxR
⊺

x +Rxδ
⊺

x,y + δx,yR
⊺

x + δx,yδ
⊺

x,y

= Px +∆x,y,

with ∆x,y = Rxδ
⊺

x,y + δx,yR
⊺

x + δx,yδ
⊺

x,y. By construction, the norm of δx,y is bounded by
c ‖x− y‖, and the norm of Rx is equal to 1. Consequently, the norm of ∆x,y is bounded by
λ‖x− y‖ on U , with λ = 2c+ c2 supx,y∈U ‖x− y‖ (up to restricting U , supx,y∈U ‖x− y‖ can
be made arbitrarily small).
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Let further Sx be the matrix of the orthogonal projection Πe1(x),...,et(x), and remark
that SxPx = 0. In view of the above paragraphs, the matrix Qx,y of the linear mapping
Πe1(x),...,et(x)Πet+1(y),...,en(y) can be rewritten as

Qx,y = SxPy

= SxPx + Sx∆x,y

= Sx∆x,y.

Because the norm of ∆x,y is bounded by λ ‖x− y‖, and the norm of an orthogonal projection
is at most 1, the norm of Qx,y is also bounded by λ ‖x− y‖. This implies that Γ(x, y), which
is the norm of Qx,y is a most λ ‖x− y‖.

4.2 Analysis of one iteration

In what follows, we work over an open neighborhood U of ζ that has the form U = Bρ(ζ),
for some ρ > 0 chosen such that

• ϕ, ΠV and ΠW are well-defined in the closed ball Bρ(ζ), with ΠV and ΠW of class C2;

• the inequality α(T 0
vV, E0) > 0 (as in Lemma 4.5) and the conclusions of Lemmas 2.3, 4.6

and 4.7 hold in the closed ball Bρ(ζ);

• W ∩Bρ(ζ) is closed (for the Euclidean topology).

Define the following:

• α0 = inf
v∈V∩Bρ(ζ)

α(TvV0, E0), so that α0 > 0;

• CV = sup
v∈Bρ(ζ)

‖D2ΠV(v)‖;

• CW = supz∈Bρ(ζ) ‖DΠW(z)‖;
• λ is the constant introduced in Lemma 4.7;

• K =
(

CV

sin(α0)
+
√
2λ
)

• K ′ = CWK

• δ > 0 is such that C2
Vδ

2 ≤ 1/2 and 2δ +Kδ2 ≤ ρ hold.

Proposition 4.8. For x in Bδ(ζ), the following properties hold:

• ϕ(x) is in Bρ(ζ), so ΠW(ϕ(x)) is well-defined;

• ‖ϕ(x)− ΠW(x)‖ ≤ K ‖x−ΠW(x)‖2;
• ‖ΠW(ϕ(x))−ΠW(x)‖ ≤ K ′ ‖x−ΠW(x)‖2 .
The rest of this subsection is devoted to the proof of this proposition. Thus, we fix x in

Bδ(ζ) in all that follows; we also use the following shorthand: y = ΠV(x), w = ΠW(x) and
z = ΠTyV(w). Another pair of points w

′ and z′ will be used: w′ is the orthogonal projection
of x on the affine space parallel to E ∩ TyV containing w, and z′ = ΠTyV(w

′).
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Step 1: Some basic inequalities. First, notice that if x is in Bδ(ζ), then we have

‖x− w‖ ≤ ‖x− ζ‖ < δ,

because ζ is in W and w = ΠW(x), and

‖x− y‖ ≤ ‖x− ζ‖ < δ,

because ζ is in V and y = ΠV(x). This implies that w and y belong to B2δ(ζ) and thus to
Bρ(ζ) since

‖w − ζ‖ ≤ ‖w − x‖+ ‖x− ζ‖ < 2δ ≤ ρ,

‖y − ζ‖ ≤ ‖y − x‖+ ‖x− ζ‖ < 2δ ≤ ρ.

Note also for further use that since ‖x− w‖ < δ and ‖x− y‖ < δ, we also have ‖y − w‖ < 2δ.

Step 2: Proof of inequality ‖z − w‖ < CV ‖x− w‖2. We continue by doing a Taylor
approximation of ΠV between y and w. Since ΠV(w) = w and ΠV(y) = y, and since all
points of the line segment between y and w are in Bρ(ζ), we obtain

w − y = ΠV(w)−ΠV(y)

= ΠTyV0(w − y) + r,

with ‖r‖ ≤ CV ‖w − y‖2
2

. Because y +ΠTyV0(w − y) = ΠTyV(w) = z, this implies

‖z − w‖ ≤ CV

2
‖y − w‖2 . (1)

Since we saw previously that ‖y − w‖ ≤ 2δ, we deduce in particular that

‖z − w‖ ≤ CVδ ‖y − w‖ ≤ 2CVδ
2.

Because x− y is orthogonal to TyV0, it is orthogonal to y− z, and similarly for w− z; these
relations imply that ‖y − z‖ ≤ ‖x− w‖. On the other hand, since w − z is orthogonal to
y − z, we also have by the Pythagorean theorem

‖y − w‖2 = ‖y − z‖2 + ‖z − w‖2 ,
so that

‖y − w‖2 ≤ ‖x− w‖2 + ‖z − w‖2 .
From this inequality, using the upper bound ‖z − w‖ ≤ 2CVδ

2, we obtain

‖z − w‖ ≤ CV

2
‖x− w‖2 + CV

2
‖z − w‖2

≤ CV

2
‖x− w‖2 + C2

Vδ
2 ‖z − w‖

≤ CV

2
‖x− w‖2 + 1

2
‖z − w‖ ,

since δ is such that C2
Vδ

2 ≤ 1
2
. We finally get, as claimed,

‖z − w‖ < CV ‖x− w‖2 . (2)
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Step 3: Proof of inequality ‖ϕ(x)− w′‖ ≤ ‖z′ − w′‖/sin(α0). To prove this inequality,
let us introduce the angle ϑ between w′−ϕ(x) and z′− ϕ(x). First, we prove that cos(ϑ) ≤
cos(α0), by an application of Lemma 4.4.

• w′ − ϕ(x) is in E0, because w′ − ϕ(x) = (w′ − w) + (w − ϕ(x)) and both summands
are in E0. By construction of w′, w′ − w is in (E ∩ TyV)0, which is in E0, and w and
ϕ(x) are in E, so w − ϕ(x) is indeed in E0 as well.

• z′ − ϕ(x) is in TyV0, because both z′ and ϕ(x) are in TyV.

• z′ − ϕ(x) is in the orthogonal complement of (E ∩ TyV)0, because z′ − ϕ(x) = (z′ −
w′)+ (w′−x)+ (x−ϕ(x)), which are respectively orthogonal to TyV0, (E ∩TyV)0 and
(E ∩ TyV)0. By Lemma 2.3, E ∩ TyV is not empty, and thus (E ∩ TyV)0 = E0 ∩ TyV0.

Thus, we can apply Lemma 4.4 to deduce cos(ϑ) ≤ cos(α0), as claimed. Alternatively,
1/ sin(ϑ) ≤ 1/ sin(α0).

Second, remark that w′−z′ is orthogonal to ϕ(x)−z′. Indeed, the latter is in TyV0, and by
construction w′− z′ is orthogonal to TyV0. This proves that ‖w′ − z′‖ = sin(ϑ) ‖w′ − ϕ(x)‖,
and thus the inequality

‖ϕ(x)− w′‖ ≤ ‖z
′ − w′‖

sin(α0)
. (3)

Step 4: Proof of inequality ‖ϕ(x)− w‖ ≤ CV

sin(α0)
‖x− w‖2 + ‖w′ − w‖. In order to

establish this inequality, remark that the vectors z − w and z′ − w′ have the same norm.
Indeed, z−w and z′−w′ are orthogonal to TyV0 by construction of z and z′, and both w−w′

and z − z′ are in TyV0. Using (2) and (3), we deduce

‖ϕ(x)− w′‖ ≤ ‖z − w‖
sin(α0)

≤ CV

sin(α0)
‖x− w‖2 .

Using the triangle inequality ‖ϕ(x)− w‖ ≤ ‖ϕ(x)− w′‖+ ‖w′ − w‖, we finally deduce

‖ϕ(x)− w‖ ≤ CV

sin(α0)
‖x− w‖2 + ‖w′ − w‖ . (4)

Step 5: Proof of inequality ‖w − w′‖ ≤ λ ‖y − w‖ ‖x− w‖. Let ϑ′ be the angle between
the vectors w′ − w and x − w; then, because x − w′ is orthogonal to w′ − w, we have
‖w − w′‖ = cos(ϑ′) ‖x− w‖. We claim further that the inequality

cos(ϑ′) ≤ cos(α(E0 ∩ TyV0,
(
E0 ∩ TwV0

)⊥
))

holds. Indeed, this follows from applying Lemma 4.4 to the vectors w′−w and x−w; let us
briefly verify that its assumptions are satisfied:

• w′ − w is in (E ∩ TyV)0 = E0 ∩ TyV0, by construction.
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• x − w is orthogonal to TwW0, and the transversality assumption (Lemma 2.3) shows
that TwW = E ∩ TwV.

• By Lemma 4.6, the vector spaces E0∩TyV0 and (E0∩TwV0)⊥ have a trivial intersection.

Using Lemma 4.7, we deduce the inequality cos(ϑ′) ≤ λ ‖y − w‖, and thus

‖w − w′‖ ≤ λ ‖y − w‖ ‖x− w‖ . (5)

Step 6: Proof of inequality ‖y − w‖ ≤
√
2 ‖x− w‖. We established the following in-

equalities at Step 2:
‖z − w‖ ≤ CVδ ‖y − w‖

and
‖y − w‖2 ≤ ‖x− w‖2 + ‖z − w‖2 .

Combining these two inequalities gives

‖y − w‖2 ≤ ‖x− w‖2 + ‖z − w‖2
≤ ‖x− w‖2 + C2

Vδ
2 ‖y − w‖2

≤ ‖x− w‖2 + 1

2
‖y − w‖2 ,

since δ2C2
V ≤ 1/2. Thus, we deduce

‖y − w‖ ≤
√
2 ‖x− w‖ . (6)

Step 7: Proof of inequality ‖ϕ(x)− w‖ ≤ K ‖x− w‖2 . Combining the results of Steps
4, 5 and 6, we obtain the first inequality claimed in Proposition 4.8:

‖ϕ(x)− w‖ ≤ CV

sin(α0)
‖x− w‖2 + ‖w′ − w‖

≤ CV

sin(α0)
‖x− w‖2 + λ ‖y − w‖ ‖x− w‖

≤ CV

sin(α0)
‖x− w‖2 +

√
2λ ‖x− w‖2

≤ K ‖x− w‖2 .

Step 8: Proof that ϕ(x) is in Bρ(ζ). Next, we prove that ‖ζ − ϕ(x)‖ < ρ. Indeed, recall
that we saw in Step 1 that ‖ζ − w‖ < 2δ and ‖x− w‖ < δ. Using the inequality proved
above, we deduce

‖ζ − ϕ(x)‖ ≤ ‖ζ − w‖+ ‖ϕ(x)− w‖
< 2δ +K ‖x− w‖2
< 2δ +Kδ2,

which is less than ρ by construction of δ.
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Step 9: Proof of inequality ‖ΠW(ϕ(x))− w‖ ≤ K ′ ‖x− w‖2. This is last item required
to conclude the proof of Proposition 4.8. A first order Taylor expansion of ΠW along the
line segment joining ϕ(x) to w (which are both in Bρ(ζ)) gives

‖ΠW(ϕ(x))− ΠW(w)‖ ≤ CW ‖ϕ(x)− w‖
≤ KCW ‖x− w‖2 c.f. Step 7

≤ K ′ ‖x− w‖2 .

Since ΠW(w) = w, the proof is complete.

4.3 Convergence of NewtonSLRA

In this subsection, we study the behavior of the sequence defined by xi+1 = ϕ(xi): we prove
that the sequence is well-defined for x0 close enough to ζ and that it converges quadratically
to a limit x∞. In what follows, we write κ = K+K ′ and we choose ν > 0 such that κν < 1/2
and 4ν < δ.

Proposition 4.9. Let x0 be in Bν(ζ). One can define sequences (xi)i≥0 and (wi)i≥0 of
elements of E such that ‖x0 − w0‖ ≤ ν and, for i ≥ 0:

• xi is in Bδ(ζ);

• wi = ΠW(xi);

• xi = ϕ(xi−1) if i ≥ 1;

• ‖xi − wi‖ ≤ κ ‖xi−1 − wi−1‖2 if i ≥ 1;

• ‖wi − wi−1‖ ≤ κ ‖xi−1 − wi−1‖2 if i ≥ 1.

Proof. We do a proof by induction; precisely, we prove that for all i ≥ 0, one can construct
x1, . . . , xi and w0, . . . , wi that satisfy the five items above.

For i = 0, the inequality ‖x0 − ζ‖ ≤ δ follows from the fact that x0 is in Bν(ζ) and that
ν ≤ δ. This implies that w0 = ΠW(x0) is well-defined; these are all the facts we need to
prove for index 0. In what follows, we will also use the facts that ‖x0 − w0‖ ≤ ν, which holds
since w0 is the closest point to x0 on W, and hence ‖w0 − ζ‖ ≤ ‖w0 − x0‖+ ‖x0 − ζ‖ ≤ 2ν.

Let us now assume that the claims hold up to index i, and prove that they still hold at
index i+ 1. Thus, x1, . . . , xi and w0, . . . , wi have been defined, and xi is in Bδ(ζ).

We set xi+1 = ϕ(xi); this is valid since xi is in Bδ(ζ). For the same reason, we can
apply Proposition 4.8; we deduce that ‖xi+1 − wi‖ ≤ K ‖xi − wi‖2 , that we can define
wi+1 = ΠW(xi+1), and that ‖wi+1 − wi‖ ≤ K ′ ‖xi − wi‖2 holds. By the triangle inequality
‖xi+1 − wi+1‖ ≤ ‖xi+1 − wi‖+ ‖wi − wi+1‖, we get

‖xi+1 − wi+1‖ ≤ κ ‖xi − wi‖2

and similarly
‖wi+1 − wi‖ ≤ K ′ ‖xi − wi‖2 ≤ κ ‖xi − wi‖2 .
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The only thing left to prove is that xi+1 is in Bδ(ζ). To this effect, remark that we have (by
an easy induction, and using the fact that κν < 1/2)

‖xj − wj‖ ≤ κ2
j−1ν2

j ≤ ν

22j−1

for 0 ≤ j ≤ i+ 1 and

‖wj+1 − wj‖ ≤ κ2
j+1−1ν2

j+1 ≤ ν

22j+1−1

for 0 ≤ j ≤ i. We deduce

‖xi+1 − ζ‖ ≤ ‖xi+1 − wi+1‖+ ‖wi+1 − wi‖+ · · ·+ ‖w1 − w0‖+ ‖w0 − ζ‖

≤ ν

22i+1−1
+

i∑

j=0

ν

22j+1−1
+ 2ν

≤ 2ν

(
1 +

∑

ℓ∈N

1

2ℓ

)

≤ 4ν

< δ because 4ν < δ.

Proof of Theorem 4.1. First, we prove that the sequence (wi) is a Cauchy sequence.
Assume that x0 lies in the ball Bν(ζ). As a consequence of Proposition 4.9, we deduce by
a simple induction (as we did during the proof of that proposition) that the following holds
for all i ≥ 0:

‖xi − wi‖ ≤
ν

22i−1
and ‖wi+1 − wi‖ ≤

ν

22i+1−1
. (7)

We deduce in particular
‖xi − wi‖ ≤ ν, (8)

and this in turn allows us to prove (by induction on ℓ) that for all i, ℓ, the following holds:

‖xi+ℓ − wi+ℓ‖ ≤
‖xi − wi‖
22ℓ−1

. (9)

As a first consequence, we have, for all k, ℓ ∈ N, with k ≥ ℓ:

‖wk − wℓ‖ ≤
k−ℓ−1∑

i=0

‖wℓ+i+1 − wℓ+i‖

≤
∞∑

i=0

ν

22ℓ+i+1−1
by Eq. (7)

≤ ν

2ℓ
.
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Therefore, the sequence (wi) is a Cauchy sequence; since limi ‖xi − wi‖ = 0, both sequences
(xi) and (wi) converge to a common limit x∞. This proves the first claim in Theorem 4.1.
Furthermore, we obtain the following estimates:

‖x∞ − wi‖ ≤
∑

ℓ∈N

‖wi+ℓ+1 − wi+ℓ‖

≤ K ′
∑

ℓ∈N

‖xi+ℓ − wi+ℓ‖2 by Proposition 4.8

≤ K ′
∑

ℓ∈N

‖xi − wi‖2
22ℓ+1−2

by Eq. (9)

≤ 2K ′ ‖xi − wi‖2 .

In particular, for i = 0, we get the claim of the theorem that ‖x∞ − ΠW(x0)‖ ≤ γ′ ‖x0 −ΠW(x0)‖2,
with γ′ = 2K ′. Besides, since ‖xi − wi‖ ≤ ν and 2κν < 1, we also obtain, for any i ≥ 0,

‖x∞ − wi‖ ≤ 2K ′ν ‖xi − wi‖ ≤ ‖xi − wi‖ . (10)

Finally, we prove that the convergence for the sequence (xi) is quadratic. Note that since
W ∩ Bρ(ζ) is closed, x∞ is in W (as claimed in the theorem). In particular, ‖xi − wi‖ ≤
‖xi − x∞‖. We deduce, for i ≥ 0,

‖xi+1 − x∞‖ ≤ ‖xi+1 − wi+1‖+ ‖wi+1 − x∞‖
≤ ‖xi+1 − wi+1‖+ ‖xi+1 − wi+1‖ by Eq. (10)

≤ 2κ ‖xi − wi‖2 using Proposition 4.9

≤ 2κ ‖xi − x∞‖2 .

This proves the last missing item from Theorem 4.1, with γ = 2κ.

Proof of Theorem 4.2. We prove that Φ is differentiable at ζ (which implies as a by-
product its continuity around ζ) and that its derivative is ΠTζW

0. Let C ′
W denote the operator

norm of the second derivative of ΠW at ζ , which is well defined since ΠW is of class C2 in
Bν(ζ).

Doing a first order expansion of ΠW between ζ and a point x in Bν(ζ), and using Theorem
4.1 and the facts that ΠW(ζ) = Φ(ζ) = ζ and ‖Φ(x)− ΠW(x)‖ ≤ γ′ ‖x−ΠW(x)‖2 proved
above, we get

∥∥Φ(x)− Φ(ζ)−ΠTζW
0(x− ζ)

∥∥ ≤ ‖Φ(x)− ΠW(x)‖+
∥∥ΠW(x)− ΠW(ζ)− ΠTζW

0(x− ζ)
∥∥

≤ γ′ ‖x−ΠW(x)‖2 + C ′
W

2
‖x− ζ‖2

≤ (γ′ +
C ′

W

2
) ‖x− ζ‖2 since ‖x−ΠW(x)‖ ≤ ‖x− ζ‖.

Our claim, and thus Theorem 4.2, are proved.
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5 Applications and experimental results

Our algorithm NewtonSLRA has been implemented in the Maple computer algebra system.
In this section, we describe three applications of Structured Low-Rank Approximation (ap-
proximate GCD, matrix completion and approximate Hankel matrices) and compare our
implementation to previous state-of-the-art. These experiments show that our all-purpose
algorithm often performs as well as, or better than, existing solutions in a variety of settings.

All experiments have been conducted on a QUAD-core AMD Opteron 8384 2.7GHz.

5.1 Univariate approximate GCD

For i ∈ N, let R[x]i denote the vector space of polynomials with real coefficients of degree at
most i. For m,n, d ∈ N, let Gm,n,d ⊂ R[x]2 denote the set

Gm,n,d = {(f, g) ∈ R[x]m × R[x]n : deg(GCD(f, g)) = d}.

We consider the Euclidean norm on R[x]m and R[x]m × R[x]n: if f =
∑m

i=0 fix
i and

g =
∑n

i=0 gix
i, then

‖f‖ =
√∑m

i=0 f
2
i

‖(f, g)‖ =
√
‖f‖2m + ‖g‖2n

Problem 2 - Approximate GCD. Let (f, g) ∈ R[x]m × R[x]n, d ∈ N. Find
(f ∗, g∗) ∈ R[x]m×R[x]n such that deg (GCD (f ∗, g∗)) = d and ‖(f − f ∗, g − g∗)‖
is “small”.

Similarly to SLRA, there are several variants of the approximate GCD problem. In some
articles, the goal is to find a pair (f ∗, g∗) which minimizes the distance ‖(f − f ∗, g − g∗)‖ (see
e.g. [42] and references therein). In particular, [11] yields a certified quadratically convergent
algorithm in the particular case d = 1 (i.e. the resultant of f ∗ and g∗ vanishes). Sometimes,
the goal is to find, if it exists, a ε-GCD, i.e. a pair (f ∗, g∗) such that ‖(f − f ∗, g − g∗)‖ < ε
and which have common roots for a given ε > 0, see e.g. [5, 14]. In some other contexts,
the degree of the GCD is not known in advance and the goal is to maximize the degree
deg(GCD(f ∗, g∗)) provided that ‖(f − f ∗, g − g∗)‖ < ε for a given ε > 0 [20].

First, we recall the definition of the d-th Sylvester matrix of two univariate polynomials,
which is rank-deficient if and only if deg(GCD(f, g)) ≥ d.

Definition 5.1 (d-th Sylvester matrix). Let (f, g) ∈ R[x]m×R[x]n be univariate polynomials
f =

∑m
i=0 fix

i, g =
∑n

i=0 gix
i. The d-th Sylvester matrix is the (m+n−d+1)×(m+n−2d+2)
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matrix defined by

Syld(f, g) =




fm 0 . . . 0 0 gn 0 . . . 0 0

fm−1 fm
. . .

...
... gn−1 gn

. . .
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
0 0 . . . f0 f1 0 0 . . . g0 g1
0 0 . . . 0 f0 0 0 . . . 0 g0








n +m− d+ 1

︸ ︷︷ ︸
n−d+1

︸ ︷︷ ︸
m−d+1

.

It is well-known that deg(GCD(f, g)) = d if and only if rank(Syld(f, g)) = m+n−2d+1
(see e.g. [28, Section 2]). Let then Dm+n−2d+1 denote the determinantal variety of the
(m+ n− d+1)× (m+ n− 2d+2)-matrices of rank m+n− 2d+1. The following corollary
is a direct consequence of this equivalence; it shows that Problem 2 is a particular case of
SLRA.

Corollary 5.2. By identifying R[x]m ×R[x]n with the linear subspace Syld (R[x]m × R[x]n),
we have Gm,n,d = Syld(R[x]m × R[x]n) ∩ Dm+n−2d+1.

Since approximate GCD is a particular case of SLRA, we now report experimental re-
sults which describe the behavior of our Maple implementation of NewtonSLRA/1 in this
context (for this application, we are searching for matrices of corank 1, so the first variant
of NewtonSLRA has a better complexity). Given m,n, d ∈ N and ε > 0, we construct an
instance of the approximate GCD problem as follows:

• we generate three polynomials (f̃ , g̃, h̃) ∈ R[x]m−d×R[x]n−d×R[x]d, with all coefficients
chosen uniformly at random in the interval [−10, 10];

• we set f = f̃ ·h̃/
∥∥∥(f̃ · h̃, g̃ · h̃)

∥∥∥ and g = g̃ ·h̃/
∥∥∥(f̃ · h̃, g̃ · h̃)

∥∥∥, so that deg(GCD(f, g)) = d

and ‖(f, g)‖ = 1;

• we construct (f, g) by adding to each of the coefficients of f and g a noise sampled from
a Gaussian distribution N (0, ε) of standard deviation ε.

In the sequel, we let (f, g) ∈ R[x]m×R[x]n denote the noisy data constructed as described
above and (f ∗, g∗) ∈ R[x]m×R[x]n denote the pair minimizing ‖(f − f ∗, g − g∗)‖ subject to
deg(GCD(f ∗, g∗)) = d.

In Table 1, we compare the steps’ sizes of NewtonSLRA with those of GPGCD, a state-of-the
art algorithm dedicated to the computation of approximate GCDs [42]. The experimental
results give evidence of the practical quadratic convergence of NewtonSLRA, as predicted by
Theorem 4.1. Experimental results for GPGCD seem to indicate linear convergence, but we
would like to point out that GPGCD converges towards a solution of the optimization problem
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sizes of iteration steps
iteration NewtonSLRA GPGCD

1 0.42 10−3 0.20 10−2

2 0.19 10−5 0.30 10−3

3 0.11 10−9 0.15 10−4

4 0.43 10−18 0.68 10−6

5 0.10 10−34 0.17 10−8

Table 1: Quadratic convergence of NewtonSLRA. The polynomials are randomly generated
with m = n = 25, d = 10, and Digits = 100 in Maple.

(it finds the nearest pair of polynomials subject to the degree condition on the GCD) and
hence returns a nearer approximation than NewtonSLRA.

Table 2 shows the experimental behavior of NewtonSLRA on a small example (n = m = 10,
r = 5) with high-precision. Here the computation is stopped when the step size becomes
smaller than 10−50 or after 50 iterations. The computations were performed with different
values of ε with Digits=120 in Maple and each entry of the table is on average over 20
random instances. For ε = 0.1 or ε = 1, GPGCD did not converge within 50 iterations for
most of the instances while NewtonSLRA converges within approximately 10 iterations. One
iteration of NewtonSLRA is slightly slower than one iteration of GPGCD because of the cost of
the singular value decomposition. Consequently, the range of problems where the quadratic
convergence of NewtonSLRA yields efficiency improvements are SLRA problems where linearly
convergent algorithms would require a lot of iterations.

The third column reports the distance between the output of NewtonSLRA and its input
(the noisy pair of polynomials). Note that the squared distance between the initial exact
data (f, g) and the noisy data (f, g) follow a χ2 distribution with n+m degrees of freedom.
Therefore, the expected magnitude of the noise is E(‖(f− f, g− g)‖) =

√
ε2(n+m) =

ε
√
n+m. In Table 2, m = n = 10 and hence the expected amplitude of the noise is 2

√
5ε.

All the entries in the third column are below this value, which indicates that on average, the
output of NewtonSLRA is actually a better approximation of the noisy data than the initial
exact data (f, g). Consequently, the quality of the solution returned by NewtonSLRA should
be sufficient for many applications even though it does not solve the associated minimization
problem. The last column of Table 2 indicates the distance between (f ′, g′), the output of
NewtonSLRA and the nearest solution (f ∗, g∗). As predicted by Theorem 4.1, the distance to
the nearest solution appears to be quadratic in the magnitude ε of the noise.

In order to estimate (f ∗, g∗), we use the linearly convergent certified Gauss-Newton it-
eration in [45], using as the starting point of the iteration the pair (f, g). Note that using
directly the Gauss-Newton approach for the approximate GCD problem requires a good
starting point: in applicative situations, the pair (f, g) is unknown and therefore finding such
a good pair with a high degree gcd is a difficult problem.

We would like to point out that NewtonSLRA is also able to solve larger problems: for in-
stance, it can compute approximate GCDs form = n = 2000 and d = 1000 within a few min-
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Nb. iterations
ε NewtonSLRA GPGCD ‖(f ′ − f, g′ − g)‖ ‖(f ′ − f ∗, g′ − g∗)‖

10−10 4.0 6.0 1.86 10−10 3.12 10−19

10−9 4.0 6.6 1.93 10−9 2.98 10−17

10−8 4.0 7.2 2.01 10−8 3.16 10−15

10−7 4.9 8.7 2.06 10−7 3.25 10−13

10−6 5.0 10.0 1.62 10−6 5.45 10−11

10−5 5.1 11.9 1.53 10−5 1.15 10−9

10−4 5.6 15.4 1.82 10−4 1.99 10−7

10−3 6.3 24.4 1.76 10−3 1.96 10−5

10−2 7.1 37.1 1.87 10−2 3.26 10−3

10−1 8.7 49.2 1.43 10−1 6.94 10−2

100 11.0 50 2.42 10−1 1.71 10−1

Table 2: Experimental convergence of NewtonSLRA. The pair (f, g) is the input polynomials,
(f ′, g′) is the output of NewtonSLRA, and (f ∗, g∗) is the optimal solution (the polynomials
minimizing ‖f − f ∗, g − g∗‖ under the constraint deg(GCD(f ∗, g∗)) = d). The polynomials
are randomly generated with m = n = 10, d = 5, and Digits = 120 in Maple. The iteration
is stopped when the step size becomes smaller that 10−50 or after 50 iterations

utes (for the default numerical precision of Maple: Digits=10). In order to demonstrate the
efficiency of our approach, we compare in Table 3 timings obtained with our implementation
of NewtonSLRA and with the software uvGCD [46]. We observe in this table that NewtonSLRA
runs faster than uvGCD; the quality of the output (i.e. the value ‖(foutput − f, goutput − g)‖)
of NewtonSLRA is comparable to that of uvGCD.

5.2 Low-rank matrix completion

Matrix completion is a problem arising in several applications in Engineering Sciences, and
plays an important role in the recent development of compressed sensing. Knowing some
properties of a matrix (e.g. its rank), the goal is to recover it by looking only at a subset of its
entries. We focus here on low-rank matrix completion which can be modeled by structured
low-rank approximation: let I be a subset of {1, . . . , p}×{1, . . . , q} and A = (ai,j)ai,j∈R,(i,j)∈I .
We consider the affine space E ⊂ Mp,q(R) of all matrices (Mi,j) such that, for (i, j) ∈ I,
Mi,j = ai,j. Low-rank matrix completion is a SLRA problem since it asks to find a matrix
in E ∩ Dr.

One particular case of interest for applications is when there is a unique solution to
the matrix completion problem. In that case, (p − r)(q − r) > dim(E). Consequently,
the transversality condition required for the analysis performed in Section 4 does not hold.
Therefore, the results in this section are mainly experimental observations.

Efficient techniques have been developped to tackle the matrix completion problem via
a convex relaxation (see [8, 10, 9, 37] and references therein). In this section, we report
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time (in s) ‖(foutput − f, goutput − g)‖
(m,n, d) NewtonSLRA uvGCD NewtonSLRA uvGCD

(20,20,10) 0.0264 0.1876 0.0003034353 0.0003034150
(40,40,20) 0.0552 0.6185 0.0005466551 0.0004171554
(60,60,30) 0.1925000 1.670900 0.0005305 0.0005248752
(80,80,40) 0.3870000 3.277600 0.0006652485 0.0006573120
(100,100,50) 0.4288000 5.221100 0.0008292970 0.0007893376
(120,120,60) 0.5922000 8.987600 0.0008901396 0.0007972352
(140,140,70) 0.8618000 12.58410 0.0009151193 0.0008635334
(160,160,80) 1.040300 16.84990 0.0009183804 0.001195548
(180,180,90) 1.510300 24.01900 0.0009902834 0.001812256
(200,200,100) 1.601800 29.00110 0.001041346 0.001032610
(220,220,110) 1.970000 39.47140 0.002613709 0.001061010
(240,240,120) 2.363400 49.85650 0.001227303 0.001083454
(260,260,130) 2.771200 61.15920 0.001224906 0.001153301
(280,280,140) 3.419700 73.69030 0.003155242 0.004107356
(300,300,150) 3.082400 86.92640 0.001296697 0.003963097

Table 3: Comparison with uvGCD. For both of the software, (f, g) is the pair of input poly-
nomials, (foutput, goutput) is the output pair.

experimental results which indicate that Algorithm NewtonSLRA can be used to solve families
of low-rank matrix completion problems which cannot be solved by the convex relaxation.
Moreover, we give timings which seem to indicate that the computational complexity of
NewtonSLRA is of the same order of magnitude as that of convex optimization techniques.

We follow [9, Section 7] for the generation of instances of the matrix completion problem:

• for r ∈ {1, . . . , p}, we generate a p × p matrix M = L · R of rank r by sampling
two matrices L ∈ Mp,r(R) and R ∈ Mr,p(R) whose entries follow i.i.d. Gaussian
distributions N (0, 1);

• we uncover m entries at random in the matrix by sampling a subset I ⊂ {1, . . . , p} ×
{1, . . . , q} of cardinality m uniformly at random;

• the affine space E is the set of matrices X = (Xi,j) such that Xi,j =Mi,j if (i, j) ∈ I.
Then we run NewtonSLRA by setting as the starting point of the iteration the matrix

N = (Ni,j) ∈ E defined by {
Ni,j =Mi,j if (i, j) ∈ I
Ni,j = 0 otherwise

and we stop iterating NewtonSLRA when the size of an iteration becomes smaller than 10−4

or after 100 iterations. We consider the problem solved if NewtonSLRA returns a matrix M̂
such that ∥∥∥M̂ −M

∥∥∥ / ‖M‖ < 10−3
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Figure 4: Performances of NewtonSLRA for low-rank matrix completion

for more than for 75% of randomly generated instances.
Figure 4 reports experimental results for n = 40, and should be compared with [9, Figure

1]. Green dots correspond to instances that can be solved by convex methods (green dots
correspond to the white/grey area in [9, Figure 1]). Any instance that could be solved by
the convex relaxation presented in [9] is also solved by NewtonSLRA. Red dots correspond
to parameters where the matrix can be completed by NewtonSLRA but not by the convex
relaxation. Black dots correspond to problems which are not solved by any of these methods.
This figure indicates that NewtonSLRA extends the range of matrix completion problems that
could be treated by convex relaxation.

Timings given in [38] indicate that the semidefinite program obtained via the convex
relaxation is solved in approximately 2 minutes on a 2GHz laptop (for the instances that
can be solved by this method: the green dots in Figure 4). For NewtonSLRA, the timings for
solving these instances range between 0.8 seconds and 34 seconds seconds on a QUAD-core
Intel i5-3570 3.4GHz.

We also compare our implementation of NewtonSLRA with a state-of-the-art Matlab soft-
ware of Riemannian optimization developped by B. Vandereycken. Figure 5 shows the con-
vergence properties of these two algorithms on an example of matrix completion of a 100×100
matrix of rank 5 where 1950 samples have been observed. The graph shows the fast conver-
gence of NewtonSLRA at each iteration and suggests quadratic convergence. The precision is
capped at 2−48 (the size of the mantissa of a double float) in order to use BLAS routines
to compute efficiently the SVD. In practice, the Riemannian optimization software is faster
than NewtonSLRA, even though it requires more iterations. For the example described in
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Figure 5: Comparison of Riemannian optimization and NewtonSLRA. The relative residual
is the value ‖PΩ(Minput −Mi)‖ / ‖PΩ(Minput)‖, where PΩ is the orthogonal projection on
the linear space of matrices having zeroes outside the set of observed entries [43]. During

NewtonSLRA, the relative residual is measured after the computation of the SVD (matrix M̃
in the pseudocode).

Figure 5, the total running time of the Riemannian optimization software is 0.1s, whereas
the total running total running time of NewtonSLRA is 45s. Also, NewtonSLRA is restricted
in practice to small matrix sizes and do not apply to large-scale matrix completion problems.
Consequently, the fast convergence of NewtonSLRA may yield improvements in applications
where we require a very precise completion of a small size matrix. Also, we would like to
point out that NewtonSLRA also experimentally converges when the input matrix is slightly
noisy, but this phenomenon is beyond the scope of this paper and is not explained by the
theoretical convergence analysis in Section 4.

5.3 Low-rank approximation of Hankel matrices

In this section, we finally compare the performances of NewtonSLRA with the STLN ap-
proach for Low-Rank Approximation of Hankel matrices proposed in [36]. Let us recall
briefly the experimental setting described in [36, Section 4.2] for 7× 5 Hankel matrices.

Let Hc be the following rank 4 Hankel matrix:

Hc =




ν1 ν2 . . . ν5
ν2 ν3 . . . ν6
...

...
...

...
ν7 ν8 . . . ν11


 ,

where νi =
∑4

ℓ=1 βℓz
i
ℓ, with β = (1, 2, 1/2, 3/2), z = (exp(−0.1), exp(−0.2), exp(−0.3), exp(−0.35)).

The perturbed matrix is H = Hc + τ∆, where τ > 0 and ∆ is a Hankel matrix with
entries picked uniformly at random in the interval [0, 1].

In Table 4, we report the number of iterations needed to obtain a rank 4 approximation
of H with several algorithms. As in [36], we stop iterating as soon as the smallest singular
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τ STLN1 STLN2 Cadzow NewtonSLRA

10−8 1.1 1.7 59.8 2.4
10−7 1.6 2.3 75.3 3.4
10−6 2.2 2.2 83.0 3.9
10−5 2.1 3.2 92.4 3.8
10−4 2.1 3.9 93.3 4.0
10−3 4.0 6.8 100* 4.1
10−2 4.5 20.5 100* 4.2
10−1 6.9 22.6 100* 4.2

Table 4: Number of iterations required by several algorithms to converge towards a rank 4
Hankel matrix. Each entry in the last column is the average of 30 test results. The three first
columns recall the experimental results in [36, Table 4.1]. 100* means that the algorithm
did not converge within 100 iterations.

τ STLN1 STLN2 Cadzow NewtonSLRA

10−8 8 100* 95 4
10−7 8 100* 100* 4
10−6 8 100* 90 4
10−5 8 100* 95 4
10−4 8 100* 99 4
10−3 6 100* 100* 4
10−2 20 100* 100* 4.1
10−1 10 100* 100* 4.4

Table 5: Number of iterations required by several algorithms to converge towards a rank
4 Hankel matrix in presence of an outlier on the 8th antidiagonal. Each entry in the last
column is the average of 30 test results. The three first columns recall the experimental
results in [36, Table 4.2].

value becomes less than 10−14. The number of iterations of NewtonSLRA becomes smaller
than for STLN when the magnitude of the noise becomes larger.

Another setting which is important for practical applications is the behavior of the al-
gorithm in the presence of an outlier, i.e. when one measure is very imprecise compared
to the other measures. To investigate this case, we follow the experimental setting in [36,
Table 4.2]: we generate Hankel matrices as above, but then we add 0.01 to all entries on
the 8th antidiagonal. Experiments seem to indicate that NewtonSLRA also behaves well in
the presence of such an outlier, as shown by the number of iterations that we report in
Table 5. Also, each of these low-rank approximations of Hankel matrices (with and without
an outlier) were computed in less than 0.6 seconds with NewtonSLRA.
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